一、什么是Celery
celery是什么
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
另外, Celery还支持不同的并发和序列化的手段
-
并发:Prefork, Eventlet, gevent, threads/single threaded
-
序列化:pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等
使用场景
celery是一个强大的 分布式任务队列的异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。
-
异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
-
定时任务:定时执行某件事情,比如每天数据统计
Celery具有以下优点
Simple(简单) Celery 使用和维护都非常简单,并且不需要配置文件。
Highly Available(高可用) woker和client会在网络连接丢失或者失败时,自动进行重试。并且有的brokers 也支持“双主”或者“主/从”的方式实现高可用。
Fast(快速) 单个的Celery进程每分钟可以处理百万级的任务,并且只需要毫秒级的往返延迟(使用 RabbitMQ, librabbitmq, 和优化设置时)
Flexible(灵活) Celery几乎每个部分都可以扩展使用,自定义池实现、序列化、压缩方案、日志记录、调度器、消费者、生产者、broker传输等等。
Celery安装
conda create --name celery python=3.8
pip install celery[redis]
pip install eventlet
二、Celery执行异步任务
2.1、基本使用
创建项目celerypro
创建异步任务执行文件celery_task:
# -*- coding: utf-8 -*-
import celery
import time
backend = 'redis://127.0.0.1:6379/1'
broker = 'redis://127.0.0.1:6379/2'
cel = celery.Celery('test1', backend=backend, broker=broker)
@cel.task
def send_email(name):
print("向%s发送邮件..." % name)
time.sleep(5)
print("向%s发送邮件完成" % name)
return "ok"
创建执行任务文件,produce_task.py:
from celery_task import send_email
result = send_email.delay("yuan")
print(result.id)
result2 = send_email.delay("alex")
print(result2.id)
注意,异步任务文件命令执行:
# celery -A celery_task worker -l info
# celery -A celery_task worker -l info -P eventlet
创建py文件:result.py,查看任务执行结果,
# -*- coding: utf-8 -*-
from celery.result import AsyncResult
from celery_task import cel
async_result=AsyncResult(id="a8fafc58-bb91-4fd1-aaff-9a606c28ef69", app=cel)
if async_result.successful():
result = async_result.get()
print(result)
# result.forget() # 将结果删除
elif async_result.failed():
print('执行失败')
elif async_result.status == 'PENDING':
print('任务等待中被执行')
elif async_result.status == 'RETRY':
print('任务异常后正在重试')
elif async_result.status == 'STARTED':
print('任务已经开始被执行')
2.1、多任务结构
celery_task.py
# -*- coding: utf-8 -*-
from celery import Celery
cel = Celery('celery_demo',
broker='redis://127.0.0.1:6379/1',
backend='redis://127.0.0.1:6379/2',
# 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
include=['celery_tasks.task01',
'celery_tasks.task02'
])
# 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False
# celery -A celery_task worker -l info -P eventlet
# celery worker -A celery_tasks.celery_task -l info -P eventlet
task01.py
# -*- coding: utf-8 -*-
import time
from celery_tasks.celery_task import cel
@cel.task
def send_email(res):
time.sleep(5)
return "完成向%s发送邮件任务" % res
task02.py
# -*- coding: utf-8 -*-
import time
from celery_tasks.celery_task import cel
@cel.task
def send_msg(name):
time.sleep(5)
return "完成向%s发送短信任务" %name
produce_task.py
# -*- coding: utf-8 -*-
from celery_tasks.task01 import send_email
from celery_tasks.task02 import send_msg
# 立即告知celery去执行test_celery任务,并传入一个参数
result = send_email.delay('yuan')
print(result.id)
result = send_msg.delay('yuan')
print(result.id)
check_result.py:
from celery.result import AsyncResult
from celery_tasks.celery import cel
async_result = AsyncResult(id="562834c6-e4be-46d2-908a-b102adbbf390", app=cel)
if async_result.successful():
result = async_result.get()
print(result)
# result.forget() # 将结果删除,执行完成,结果不会自动删除
# async.revoke(terminate=True) # 无论现在是什么时候,都要终止
# async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
elif async_result.failed():
print('执行失败')
elif async_result.status == 'PENDING':
print('任务等待中被执行')
elif async_result.status == 'RETRY':
print('任务异常后正在重试')
elif async_result.status == 'STARTED':
print('任务已经开始被执行')
开启work: celery worker -A celery_tasks.celery_task -l info -P eventlet ,添加任务(执行produce_task.py),检查任务执行结果(执行check_result.py)
四 Django中使用celery
项目根目录创建celery包,目录结构如下:
配置文件config.py:
broker_url = 'redis://127.0.0.1:6379/1'
result_backend = 'redis://127.0.0.1:6379/2'
任务文件tasks.py:
from mycelery.main import app
import time
import logging
log = logging.getLogger("django")
@app.task # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
def send_sms(mobile):
"""发送短信"""
print("向手机号%s发送短信成功!"%mobile)
time.sleep(5)
return "send_sms OK"
@app.task # name表示设置任务的名称,如果不填写,则默认使用函数名做为任务名
def send_sms2(mobile):
print("向手机号%s发送短信成功!" % mobile)
time.sleep(5)
return "send_sms2 OK"
最后在main.py主程序中对django的配置文件进行加载
import os
from celery import Celery
# 创建celery实例对象
app = Celery("sms")
# 把celery和django进行组合,识别和加载django的配置文件
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'study_django.settings.dev')
# 通过app对象加载配置
app.config_from_object("mycelery.config")
# 加载任务
# 参数必须必须是一个列表,里面的每一个任务都是任务的路径名称
# app.autodiscover_tasks(["任务1","任务2"])
app.autodiscover_tasks(["mycelery.sms", ])
启动Celery的命令,切换目录到mycelery的根目录下启动
celery -A mycelery.main worker --loglevel=info
celery -A mycelery.main worker --loglevel=info -P eventlet
celery -A mycelery.main worker -l info -P eventlet
Django视图调用
from django.shortcuts import render
# Create your views here.
from django.shortcuts import render,HttpResponse
from mycelerys.sms.tasks import send_sms,send_sms2
from datetime import timedelta
from datetime import datetime
def test(request):
################################# 异步任务
# 1. 声明一个和celery一模一样的任务函数,但是我们可以导包来解决
# send_sms.delay("110")
# send_sms2.delay("119")
# send_sms.delay() 如果调用的任务函数没有参数,则不需要填写任何内容
################################# 定时任务
# ctime = datetime.now()
# # 默认用utc时间
# utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
# time_delay = timedelta(seconds=10)
# task_time = utc_ctime + time_delay
# result = send_sms.apply_async(["911", ], eta=task_time)
# print(result.id)
return HttpResponse('ok')
资料参考
https://www.cnblogs.com/pyedu/p/12461819.html
https://blog.csdn.net/qq_43030934/article/details/125663084
https://blog.csdn.net/weixin_43544193/article/details/118996960?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1-118996960-blog-125663084.pc_relevant_multi_platform_whitelistv3&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1-118996960-blog-125663084.pc_relevant_multi_platform_whitelistv3&utm_relevant_index=1
https://segmentfault.com/a/1190000007780963